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Rev Issue Date Affected Change Summary
Paragraphs
Initial 11/30/2000 All New Module
A 4/15/2003 2.1.1,2.1.4, Identified 11-m subnet as non-operational.
2.2.3, 3. Corrected equations 4, and 7. Added DSS 55.
Documented improved coverage for MDSCC
antennas. Expressed Geodetic coordinates in
terms of WGS84 ellipsoid. Revised Proposed
Capabilities.
B 2/5/2004 21.2,2.1.2.1, Corrects locations of DSS 26, 54 and DSS 55.
2.11.2.2, 2.1.5, | Revises locations of other stations. Adds Table 7
2.2.3.6, (location uncertainties). Provides final receive
2.2.3.10,2.2.4 | and transmit masks for DSS 55. Adds Figure 8
and renumbered subsequent figures.

C 8/20/2005 Tables 2, 5,& 6. | Documents new location and masking of DSS
65.

D 9/19/2008 2.1.1,2.2.3.7 — | Deleted references to 11-m antenna subnet

2.2.3.10, Tables | stations and DSS 16 which have been
1,2,5-7, decommissioned. Revised Figures 9 and 10 and
Figures 9 & 10 | titles of Figures 11 and 12. Deleted Figure 15
and renumbered subsequent figures.

E 12/15/2009 Tables 1, 2, 5— | Deleted references, the affected Figures, and

7, Figures 9, 10, | information in the Tables due to the 26-m
22, & 27 stations decommissioning. Renumbered the
Figures.

F 6/1/2010 Page 18 Corrected DSS-27 cable wrap limits in Table 8.
Eliminated the Rev. E designation for the
document series.

Note to Readers

The 810-005 document series has been structured so that each document module can be
independently revised without affecting others in the series. Hence, the Revision E previously

designated for 810-005 has become unnecessary. This module is one of the many in the 810-005

series; each may be published or changed, starting as an initial issue that has no revision letter.

When a module is updated, a change letter is appended to the module number in the header and a

summary of the changes is entered in the module’s change log.
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1 Introduction

1.1 Purpose

This module describes the geometry and surveillance visibility provided by the
DSN for support of spacecraft telecommunications.

1.2 Scope

This module provides the Deep Space Network (DSN) station coordinates that are
required for spacecraft navigation and to locate the stations with respect to other points on the
Earth's surface. Coverage charts are provided to illustrate areas of coverage and non-coverage
from selected combinations of stations for spacecraft at selected altitudes. Horizon masks are
included so the effects of terrain masking can be anticipated.

2 General Information

2.1 Station Locations

The following paragraphs discuss the important concepts relating to establishing
the location of the DSN antennas.

2.1.1 Antenna Reference Point

The coordinates provided by this module refer to a specific point on each antenna.
For antennas where the axes intersect, the reference point is the intersection of the axes. For
antennas for which the axes do not intersect, the reference point is the intersection of the primary
(lower) axis with a plane, perpendicular to the primary axis, and containing the secondary
(upper) axis. Table 1 lists the DSN antennas by type and provides the axis offset where
appropriate. The effect of this offset is to cause the range observable to be a function of antenna
position as discussed in module 203 of this handbook.

Although the antenna reference point is fixed, the path length between this point
and a spacecraft normally increases as the antenna elevation is changed from zenith to the
horizon. This results from the antenna subreflector being moved to provide maximum gain as
gravity distorts the antenna geometry. The effect can be modeled as a decrease in antenna height
as a function of elevation angle for orbit determination purposes. The effect is greatest on the 70-
m antennas and is discussed in the appropriate Telecommunications Interface modules of this
handbook. Subreflector movement can be disabled for activities such as very-long baseline
interferometrry (VLBI) where a constant path length is more important than maximum gain.
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Table 1. DSN Antenna Types

Antenna Type Station Identifiers Primary and Axis Offset
Secondary Axes
70-m 14, 43, 63 Az/E| 0
34-m High Efficiency (HEF) 15, 45, 65 Az/EI 0
34-m Beam Waveguide 24, 25, 26, 34, 54, 55 Az/El 0
(BWG)
34-m High-speed Beam 27t Az/EI 1.83m
Waveguide (HSB)
Note:
Az/El Antenna's azimuth plane is tangent to the Earth's surface, and antenna at 90-degrees
elevation is pointing at zenith.

2.1.2 IERS Terrestrial Reference Frame

To use station locations with sub-meter accuracy, it is necessary to clearly define
a coordinate system that is global is scope as opposed to the regional coordinate systems
referenced in previous editions of this document. The International Earth Rotation Service
(IERS) has been correlating station locations from many different services and has established a
coordinate frame known as the IERS Terrestrial Reference Frame (ITRF). The IERS also
maintains a celestial coordinate system and coordinates delivery of Earth-orientation
measurements that describe the motion of station locations in inertial space. The DSN has
adopted the IERS terrestrial system to permit its users to have station locations consistent with
widely available Earth-orientation information.

The IERS issues a new list of nominal station locations each year, and these
locations are accurate at the few-cm level. At this level of accuracy, one must account for
ongoing tectonic plate motion (continental drift), as well as other forms of crustal motion. For
this reason ITRF position coordinates are considered valid for a specified epoch date, and one
must apply appropriate velocities to estimate position coordinates for any other date. Relative to
the ITRF, even points located on the stable part of the North American plate move continuously
at a rate of about 2.5 cm/yr.

The coordinates in this module are based on the 1993 realization of the ITRF,
namely ITRF93, documented in IERS Technical Note 18 (1). ITRF93 was different from earlier
realizations of the ITRF in that it was defined to be consistent with the Earth Orientation
Parameters (EOP) distributed through January 1, 1997. Earlier realizations of the ITRF were
known to be inconsistent (at the 1-3 cm level) with the Earth orientation distributions.

After ITRF93 was published, the IERS decided to improve the accuracy of the
EOP series and make it consistent with the ITRF effective January 1, 1997. This date was chosen
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because it enabled a defect in the definition of universal time to be removed at a time when its
contribution was zero. In anticipation of this change, ITRF94 and ITRF95 were made consistent
with the pre-ITRF93 definition of the terrestrial reference frame, and all prior EOP series were
recomputed in accordance with the new system.

The DSN continues to deliver Earth-orientation calibrations to navigation teams
that are consistent with the earlier definition and using the ITRF93 reference frame because it is
impractical for planetary navigators to adopt an IERS standard that changes approximately every
year. Users interested in precise comparison with other systems should keep in mind the small
systematic differences.

2.1.2.1 Cartesian Coordinates

Figure 1 illustrates the relationship between the Cartesian coordinates and
geocentric coordinates discussed below. The Cartesian coordinates of the DSN station locations
are fits to many years of tracking and Very-Long Baseline Interferometry data and are expressed
in the ITRF93 reference system in Table 2.

2.1.2.2 Estimated DSN Site Velocities

The locations given in Table 2 are for the epoch 2003.0. To transform these
locations to any other epoch, the site velocities should be used. Table 3 gives the site velocities
for the DSN stations, in both Cartesian (X, y, z) and east-north-vertical (e, n, v) components.

2.1.3 Geodetic Coordinates

Locations on the Earth’s surface are defined with respect to the geoid. That is, the
surface around or within the Earth that is normal to the direction of gravity at all points and
coincides with mean sea level (MSL) in the oceans. The geoid is not a regular surface because of
variations in the Earth's gravitational force. To avoid having to make computations with respect
to this non-mathematical surface, computations are made with respect to an ellipsoid, that is, the
surface created by rotating an ellipse around one of its two axes. The ellipsoid is uniquely
defined by specifying the equatorial radius and the flattening (that is, the amount that the
ellipsoid deviates from a perfect sphere). The relationship between the polar and equatorial axes
is given by the following expression:

(polar axis) = (equatorial axis) x (1 — 1/flattening) )

In the past, the ellipsoid used was chosen to be a best fit to the geoid in the area of
interest. However, the presence of the Global Positioning Satellite (GPS) system has resulted in a
single ellipsoid, named the WGS 84 Ellipsoid, being adopted for most geodetic measurements.
This ellipsoid, while providing a good fit to the entire Earth, results in larger differences between
the geoid and the ellipsoid than could be obtained when ellipsoids were chosen to fit only a
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Table 2. Cartesian Coordinates for DSN Stations in ITRF93 Reference Frame, Epoch 2003.0

Antenna Cartesian Coordinates

Name Description x(m) y(m) z(m)
DSS 13 34-mR &D —-2351112.659 —-4655530.636 +3660912.728
DSS 14 70-m —2353621.420 —4641341.472 +3677052.318
DSS 15 34-m HEF —2353538.958 —4641649.429 +3676669.984
DSS 24 34-m BWG —2354906.711 —-4646840.095 +3669242.325
DSS 25 34-m BWG —2355022.014 —-4646953.204 +3669040.567
DSS 26 34-m BWG —2354890.797 —4647166.328 +3668871.755
DSS 27 34-m HSB —2349915.428 —4656756.406 +3660096.469
DSS 34 34-m BWG —4461147.093 +2682439.239 —3674393.133
DSS 43 70-m —-4460894.917 +2682361.507 -3674748.152
DSS 45 34-m HEF —4460935.578 +2682765.661 —3674380.982
DSS 54 34-m BWG +4849434.488 -360723.8999 +4114618.835
DSS 55 34-m BWG +4849525.256 -360606.0932 +4114495.084
DSS 63 70-m +4849092.518 —360180.3480 +4115109.251
DSS 65 34-m HEF +4849339.634 —-360427.6637 +4114750.733
DSS 652 34-m HEF (+4849336.618) (-360488.6349) (+4114748.922)

Notes:

1. All antennas are AZ-EL type unless otherwise specified.

2. DSS 65 has been relocated. Values in parentheses are provided for historical purposes
(prior to March, 2005).

10
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Complex x(mlyr) y(mlyr) z(mlyr) e(mlyr) n(mlyr) v(mlyr)
Goldstone -0.0180 | 0.0065 | -0.0038 | -0.0190 | -0.0045 | -0.0003
(Stations 1x & 2x)
Canberra -0.0335 | -0.0041 0.0392 0.0208 0.0474 -0.0012
(Stations 3x & 4x)
Madrid -0.0100 | 0.0242 0.0156 0.0234 0.0195 0.0012
(Stations 5x & 6x)

portion of the Earth. This difference, the Geoidal Separation, must be subtracted from the
WGS 84 height measurements to give the height with respect to mean sea level.

Geoidal separations are typically determined from satellite altimetry and gravity
measurements and maintained as a grid of points in longitude and latitude. Modern GPS
equipment uses a sixteen point interpolation routine to estimate the surface curvature in the grid-
square of interest and the geoidal separation at the specific point within the grid-square. Table 4
provides the average geoidal separation for the three DSN complexes. These numbers do not
take into consideration such things as topography within the complex and grading that was done
when the antennas were installed.

Table 4. Average Geoidal Separations for the DSN Complexes

Complex Geoidal Separation(m)
Goldstone 306
(Stations 1x & 2x)
Canberra 19.3
(Stations 3x & 4x)
(Stations 5x & 6x)

Once the Cartesian coordinates (X, y, z) are known, they can be transformed to
geodetic coordinates in longitude, latitude, and height (A, ¢, h) with respect to the ellipsoid by
the following non-iterative method (Reference 2):

A=tan"'2 @)
X

11
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_1/ z(l—f)+e2asin3u )

= tan 3
? (l—f)(p—ezacos3 u) @
1
h=pcos¢+zsin¢—a(1—ezsin2¢)2 4)
where:
1
= 5
flattening %)
e’ =2f - f* (6)
1
p=(x?+y?)? (7)
1
r=(p2+zz)z ®)
-1< eza
u=tan =|(1-f)+— 9)
p r

Table 5 provides geodetic coordinates derived by the preceding approach using
the WGS84 ellipsoid that has a semi-major axis (a) of 6378137 m and a flattening of
298.2572236.

2.1.4 Geocentric Coordinates

Geocentric coordinates are used by navigation analysts when corrections to
station locations are being investigated. They relate the station location to the Earth's center of
mass in terms of the geocentric radius and the angles between the station and the equatorial and
hour angle planes. Geocentric coordinates for the DSN stations are provided in Table 6.

2.1.5 Station Location Uncertainties

The primary reference antennas at each complex are the 34-m HEF antennas.
Their location has been established by very-long baseline Interferometry (VLBI) measurements
over a period of many years and their location uncertainty is that of the VLBI technique. The
uncertainty of the other station locations depends on the method used to link their position to that
of the HEFs. The estimated location uncertainties for all stations are provided in Table 7.

12
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Table 5. Geodetic Coordinates for DSN Stations With Respect to the WGS 84 Ellipsoid

Antennal latitude (¢) longitude (A) height(h)2
Name Description deg | min sec deg | min sec (m)

DSS 13 34-mR&D 35 14 49.79131 | 243 12 19.94761 1070.444
DSS 14 70-m 35 25 33.24312 | 243 6 37.66244 1001.390
DSS 15 34-m HEF 35 25 18.67179 | 243 6 46.09762 973.211
DSS 24 34-m BWG 35 20 23.61416 | 243 7 30.74007 951.499
DSS 25 34-m BWG 35 20 15.40306 | 243 7 28.69246 959.634
DSS 26 34-m BWG 35 20 8.48118 243 7 37.14062 968.686
DSS 27 34-m HSB 35 14 17.77841 | 243 | 13 24.05838 1052.468
DSS 34 34-m BWG -35 | 23 5452383 | 148 | 58 55.07191 692.020
DSS 43 70-m -35 | 24 8.72724 148 | 58 52.56231 688.867
DSS 45 34-m HEF -35 | 23 5444766 | 148 | 58 39.66828 674.347
DSS 54 34-m BWG 40 25 32.23805 | 355 | 44 45.25141 837.051
DSS 55 34-m BWG 40 25 27.46525 | 355 | 44 50.52012 819.061
DSS 63 70-m 40 25 52.35510 | 355 | 45 7.16924 864.816
DSS 65 34-m HEF 40 25 37.94289 | 355 | 44 57.48397 833.854
DSS 653 34-m HEF (40) | (25) | (37.86643) | (355) | (44) | (54.89535) | (833.830)

Notes:

1. All antennas are AZ-EL type unless otherwise specified.

2. Geoidal separation must be subtracted from WGS 84 height to get MSL height.

3. DSS 65 has been relocated. Values in parentheses are provided for historical purposes
(prior to March, 2005).

13
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Table 6. Geocentric Coordinates for DSN Stations

Antennal Geocentric Coordinates
Name Description Spin Radius Latitude Longitude Geocentric
(m) (deg) (deg) Radius (m)
DSS 13 34-mR&D 5215524.541 35.0660180 243.2055410 6372125.096
DSS 14 70-m 5203996.968 35.2443523 243.1104618 6371993.267
DSS 15 34-m HEF 5204234.338 35.2403129 243.1128049 6371966.511
DSS 24 34-m BWG 5209482.543 35.1585346 243.1252056 6371973.601
DSS 25 34-m BWG 5209635.569 35.1562591 243.1246368 6371982.537
DSS 26 34-m BWG 5209766.354 35.1543409 243.1269835 6371992.264
DSS 27 34-m HSB 5216079.250 35.0571452 243.2233496 6372110.240
DSS 34 34-m BWG 5205508.011 -35.2169824 148.9819644 6371693.538
DSS 43 70-m 5205251.840 | -35.2209189 148.9812673 6371688.998
DSS 45 34-m HEF 5205494.965 | -35.2169608 148.9776856 6371675.873
DSS 54 34-m BWG 4862832.157 40.2357726 355.7459032 6370025.490
DSS 55 34-m BWG 4862913.938 40.2344478 355.7473667 6370007.988
DSS 63 70-m 4862450.835 40.2413554 355.7519915 6370051.198
DSS 65 34-m HEF 4862715.598 40.2373555 355.7493011 6370021.709
DSS 652 34-m HEF (4862717.109) | (40.2373343) | (355.7485820) | (6370021.694)
Notes:

1. All antennas are AZ-EL type unless otherwise specified.

2. DSS 65 has been relocated. Values in parentheses are provided for historical purposes
(prior to March, 2005).

14
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Antenna Location Uncertainties (m)
Name Description | Spin Radius Longitude z
DSS 13 34-mR&D 0.025 0.036 0.031
DSS 14 70-m 0.024 0.035 0.030
DSS 15 34-m HEF 0.023 0.035 0.030
DSS 24 34-m BWG 0.029 0.036 0.033
DSS 25 34-m BWG 0.029 0.036 0.033
DSS 26 34-m BWG 0.030 0.038 0.034
DSS 27 34-m HSB 0.088 0.048 0.071
DSS 34 34-m BWG 0.030 0.036 0.034
DSS 43 70-m 0.026 0.035 0.032
DSS 45 34-m HEF 0.024 0.035 0.031
DSS 54 34-m BWG 0.032 0.036 0.034
DSS 55 34-m BWG 0.050 0.037 0.048
DSS 63 70-m 0.027 0.035 0.031
DSS 652 34-m HEF 0.026 0.034 0.030
Notes:

1. All antennas are AZ-EL type unless otherwise specified.

2. Applies to both present and former location.

15
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2.2 Coverage and Mutual Visibility

The coverage and mutual visibility provided for spacecraft tracking depends on
the altitude of the spacecraft, the type or types of antennas being used, the blockage of the
antenna beam by the landmask and structures in the immediate vicinity of the antennas, and
whether simultaneous uplink coverage is required. Receive limits are governed by the
mechanical capabilities of the antennas and the terrain mask. Transmitter limits, on the other
hand, are based on radiation hazard considerations to on-site personnel and the general public
and are set above the terrain mask and the antenna mechanical limits.

2.2.1 Use of Transmitters Below Designated Elevation Limits

Requests for coordination to relinquish the transmitter radiation restrictions will
be considered for spacecraft emergency conditions or for critical mission support requirements
(conditions where low elevation or high-power transmitter radiation is critical to mission
objectives). In either event, the uplink radiation power should be selected as the minimum
needed for reliable spacecraft support.

2.2.1.1 Spacecraft Emergencies

The need for violation of transmitter radiation restrictions to support a spacecraft
emergency will be determined by the DSN. The restrictions will be released after assuring that
appropriate local authorities have been notified and precautions have been taken to ensure the
safety of both on-site and off-site personnel.

2.2.1.2 Critical Mission Support

If critical mission activities require the transmitter radiation restrictions to be
violated, the project is responsible for notifying the DSN through their normal point of contact
three months before the activity is scheduled. The request must include enough information to
enable the DSN to support it before the appropriate authorities. Requests made less than three
months in advance will be supported on a best-efforts basis and will have a lower probability of
receiving permission to transmit. Requests will be accepted or denied a minimum of two weeks
before the planned activity.

2.2.2 Mechanical Limits on Surveillance Visibility

All DSN antennas have areas of non-coverage caused by mechanical limits of the
antennas. The first area is the mechanical elevation limit, which is approximately six degrees for
antennas using an azimuth-elevation mount and somewhat lower for antennas with X-Y mounts.
A second area of non-coverage is the area off the end or ends of the antenna's primary axis
referred to as the keyhole.

16
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2.2.2.1 Azimuth-Elevation Antennas

The keyhole of the DSN azimuth-elevation antennas is directly overhead and
results from the fact that the antennas can only be moved over an arc of approximately 85
degrees in elevation. In order to track a spacecraft which is passing directly overhead, it is
necessary to rotate the antenna 180 degrees in azimuth when the spacecraft is near zenith in order
to continue the track. Thus, the size of the keyhole depends on how fast the antenna can be
slewed in azimuth. Specifications on antenna motion are contained in module 302, Antenna
Positioning. The location of the DSN antennas is such that overhead tracks are not required for
spacecraft on normal planetary missions.

The DSN azimuth-elevation antennas have an additional restriction on antenna
motion caused by the routing path of cables and hoses between the fixed and rotating portions of
the antenna. This azimuth cable wrap has no effect on surveillance visibility but does place a
restriction on the time between tracks due to the requirement to unwind the cables. Table 8
provides the approximate cable wrap limits for the DSN azimuth-elevation antennas.

2.2.3 Coverage Charts

The following figures provide examples of coverage for various combinations of
stations, spacecraft altitudes, and type of support. These figures were plotted by a program
written as a collection of Microsoft Excel 97/98 macros. The program has been used with all
subsequent versions of Excel up to the present with the exception of Excel 2008 for the
Macintosh that does not support Visual Basic. It is available for download (488 k-byte Zipped
file) from the 810-005 web site <http://eis.jpl.nasa.gov/deepspace/dsndocs/810-005/>. The file
includes a spreadsheet with the antenna coordinates and mask data used to create the figures.

2.2.3.1 70-m Subnet Receive Coverage of Planetary Spacecraft

Figure 2 illustrates the receive coverage of planetary spacecraft by the DSN 70-m
antenna subnet. The small ovals at each antenna location on the figure represent the 70-m
antenna keyholes above each station and are approximately to scale.

2.2.3.2 70-m Subnet Transmit Coverage of Planetary Spacecraft

Figure 3 illustrates the transmit coverage of planetary spacecraft by the DSN 70-
m antenna subnet using a 10.4-degree transmit elevation limit at DSS 14 and a 10.2-degree
transmit elevation limit at DSS 43 and DSS 63. The small ovals at the antenna locations on the
figure represent the 70-m antenna keyholes. The reduced coverage to the west of DSS 63 is
caused by the need to have a 20.2-degree elevation limit to protect the high ground to the
northwest of the station.
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Table 8. Approximate Cable Wrap Limits for Azimuth-Elevation Antennas

Antenna Azimuth Position (Degrees)
Name(s) Description Center of Wrap CW Limit CCW Limit
DSS 14, 63 70-m 45 310 140
DSS 43 70-m 135 40 230
DSS 15, 65 34-m HEF 135 360 270
DSS 45 34-m HEF 45 270 180
DSS 24, 25, 26, 54, 55 34-m BWG 135 360 270
DSS 34 34-m BWG 45 270 180
DSS 27 34-m HSB 0 292 68
2.2.3.3 34-m HEF Subnet Receive Coverage of Planetary Spacecraft

Figure 4 illustrates the receive coverage of planetary spacecraft by the DSN 34-m
HEF antenna subnet. The keyhole above each 34-m HEF antenna is very small and is somewhat
exaggerated for clarity on the maps. This chart is very similar to Figure 2 but is included to show
that the location of DSS 65 shifts the apparent position of the high ground to the north and west
of where it is observed from DSS 63.

2.2.3.4 34-m HEF Subnet Transmit Coverage of Planetary Spacecraft

Figure 5 illustrates the transmit coverage of planetary spacecraft by the DSN
34-m HEF antenna subnet. As is the case in Figure 4, the size of the circles used to indicate the
keyholes on the map are larger than the actual size of the 34-m HEF antenna keyholes. The
transmit elevation limit is 10.6-degrees at DSS 15 and 10.5-degrees at DSS 45. At DSS 65, the
transmit limit is 10.3 degrees but it is increased to 14.0 degrees when the antenna is pointed in a
northerly direction from 326 to 358 degrees azimuth and again from 26 to 50 degrees azimuth.
This is done to clear the hills to the north, north-west and other antennas to the north, north-ecast
of DSS 65’s new location.

2.2.3.5 34-m BWG Antennas Receive Coverage of Planetary Spacecraft

Figure 6 illustrates the receive coverage of planetary spacecraft by a subnet of
DSN 34-m BWG antennas capable of supporting X and Ka bands. As is the case with the other
34-m antennas, the size of the keyhole circles on the map is larger than the actual size of the
antenna keyholes. This chart is very similar to Figures 2 and 4 but is included to show that the
location of DSS 55 shifts the apparent position of the high ground to where it does not
significantly affect tracking coverage.
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2.2.3.6 34-m BWG Antennas Transmit Coverage of Planetary Spacecraft

Figures 7 illustrates the transmit coverage of planetary spacecraft by the same
subnet of 34-m BWG antennas (DSS 26, 34, and 55) shown in Figure 6. DSS 55 is sited south-
east of DSS 54 at a slightly lower elevation. To allow an adequate clearance above DSS 54 for
the DSS 55 transmitter pencil beam, an 18-degree lower elevation limit is placed on the DSS 55
transmitter between 294 and 360 degrees. Figure 8 is included primarily to show the effect of
substituting DSS 54 for DSS 55 as there is no significant coverage difference between any of the
3 Goldstone BWG stations. Coverage from DSS 54 between 267 and 3 degrees azimuth is
limited to elevations above 13.5 degrees in order to protect the high ground north-west of the
station. Although transmit coverage by DSS 54 is somewhat better, there is more competition for
this station because of its S-band and future 26-GHz near-Earth capability.

2.2.3.7 34-m BWG Antennas Receive Coverage of Near Earth Spacecraft

Figure 9 illustrates the receive coverage of near-Earth spacecraft by the DSN 34-
m BWG antennas at altitudes of 500 km, 5000 km, and geosynchronous (35789 km) using the
near-Earth support stations, DSS 24, 34, and 54. As is the case with the other 34-m antennas, the
size of the keyhole circles on the map is larger than the actual size of the antenna keyholes. It
should be noted that by lunar distance, the coverage is essentially the same as the planetary
coverage shown in Figure 6.

2.2.3.8 34-m BWG Antennas Transmit Coverage of Near Earth Spacecraft

Figure 10 illustrates the transmit coverage of near-Earth spacecraft by the DSN
34-m BWG antennas at altitudes of 500 km, 5000 km, and geosynchronous (35789 km) using the
near-Earth support stations, As is the case with Figure 11, the keyholes are shown larger than
actual size and coverage at lunar distance is essentially the same as the planetary coverage shown
In Figure 7.

2.2.4 Horizon Masks and Antenna Limits

Figures 11 through 23 show the horizon mask and transmitter limits for all DSN
stations. The transmitter limits are identified as the L/P (low power) transmitter mask (or the H/P
(high power) transmitter mask depending on the type of transmitter that is available. Only the
70-m stations have both L/P and H/P transmitters but all stations use the same elevation limits
for all their transmitters. In general, the transmitter limit is set at approximately 10.2 degrees
unless a higher limit is required to clear terrain or some other obstruction. The masks and limits
are the ones used to establish the coverage depicted in Figures 2 through 10. Each chart shows
antenna coordinates in two coordinate systems. For all DSN antennas, the coordinate systems are
azimuth-elevation and hour angle-declination.
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Charts showing hour angle-declination coordinates can be used to provide an
elevation profile (for estimating antenna gain and noise temperature) for spacecraft at planetary
distances where the declination remains constant for an entire tracking pass. The hour angle
curves on these charts have been spaced at increments of 15 degrees so that pass length may
conveniently be estimated. These figures were plotted by a program written as a collection of
Microsoft Excel 97/98 macros. The program has been used with all subsequent versions of Excel
up to the present with the exception of Excel 2008 for the Macintosh that does not support Visual
Basic. The program is available for download (224 k-byte Zipped file) from the 810-005 web site
<http://eis.jpl.nasa.gov/deepspace/dsndocs/810-005/>. The file includes a spreadsheet with the
mask data that can be used to accurately calculate spacecraft rise and set times.
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